

The Joint Center for Satellite Data Assimilation, Progress and Plans

Lars Peter Riishojgaard
Director, JCSDA

Overview

- Introduction
- JCSDA, its mission and partners
- Satellite data, NWP and societal benefits
 - in the JCSDA
 - elsewhere
 - measuring the impact
- Outlook and plans, challenges

JCSDA mission:

...to accelerate and improve the quantitative use of research and operational satellite data in weather, ocean, climate and environmental analysis and prediction models.

JCSDA Science Priorities

- Radiative Transfer Modeling (CRTM)
- Preparation for assimilation of data from new instruments
- Clouds and precipitation
- Assimilation of land surface observations
- Assimilation of ocean surface observations
- Atmospheric composition; chemistry and aerosol

JCSDA Partners

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Agencies Executives NASA, NOAA, Department of the Navy, and Department of the Air Force

Management Oversight Board (Rotating Chair)

NOAA/NWS/NCEP NASA/GSFC/Earth Sciences Division NOAA/NESDIS/STAR NOAA/OAR

Department of the Air Force/Air Force Director of Weather Department of the Navy/N84 and NRL

DoD/USN/NRL

JCSDA Executive Team

Director Agency Deputy Directors Chief Administrative Officer

JCSDA Mode of operation

- Directed research
 - Carried out by the partners
 - Mixture of new and leveraged funding
 - JCSDA plays coordinating role
- External research
 - NOAA-administered FFO
 - ~\$2M/year available => revolving portfolio of 15-20 three-year projects
 - Open to the broader research community

Major Accomplishments

- Common assimilation infrastructure at NOAA and NASA
- Community radiative transfer model
- Common NOAA/NASA land data assimilation system
- Interfaces between JCSDA models and external researchers
- Snow/sea ice emissivity model permits 300% increase in sounding data usage over high latitudes improved polar forecasts
- MODIS winds, polar regions, improved forecasts Implemented
- AIRS radiances assimilated improved forecasts Implemented
- COSMIC data assimilated improved forecasts Implemented
- Improved physically based SST analysis Implemented
- Advanced satellite data systems such as DMSP (SSMIS), CHAMP GPS, WindSat tested for implementation.
- Data denial experiments completed for major data base components in support of system optimization

NWP requirements for upperair data coverage

Conventional obs (u, v, T, q, vertically resolved)

Example satellite data coverage (AMSU-A)

ECMWF Data Coverage (All obs DA) - ATOVS 30/SEP/2007; 00 UTC Total number of obs = 410322

Data Assimilation Impacts in the NCEP GDAS

Satellite and Conventional data provide nearly the same amount of improvement to the Northern Hemisphere.

Figure 3(b). 500hPa Z Anomaly Correlations for the GFS with (Ops.+AIRS) and without (Ops.) AIRS data, Northern hemisphere, January 2004

Value of weather forecasting

 Department of Commerce: "20% of overall US economy is weather sensitive": ~\$2.8 trillion/year

Assume that <u>half of this is "forecast sensitive"</u>: \$1.4 trillion/year

Value of weather forecasting (II)

- Assume that the <u>potential savings due to weather</u>
 forecasting amount to 5% of the "forecast sensitive total":
 ~\$70B/year
- Assume that the <u>savings are distributed linearly over the</u> <u>achieved forecast range</u> for the global NWP system:
 - 0 h useful forecast range => \$0 in savings
 - 336 h useful forecast range => \$70B in savings
- This implies that the value to the United States economy of NWP is ~200M per hour of forecast range per year!

MODIS winds in GEOS-5

Riishojgaard et al. 2006

NOAA/NCEP vs. ECMWF skill over 20+ years

Satellite Data used in NWP

- HIRS sounder radiances
- AMSU-A sounder radiances
- AMSU-B sounder radiances
- GOES sounder radiances
- GOES, Meteosat, GMS winds
- GOES precipitation rate
- SSM/I precipitation rates
- TRMM precipitation rates
- SSM/I ocean surface wind speeds
- ERS-2 ocean surface wind vectors

- Quikscat ocean surface wind vectors
- AVHRR SST
- AVHRR vegetation fraction
- AVHRR surface type
- Multi-satellite snow cover
- Multi-satellite sea ice
- SBUV/2 ozone profile and total ozone
- Altimeter sea level observations (ocean data assimilation)
- AIRS
- MODIS Winds
- COSMIC

Number of satellite sensors that are or will be soon assimilated in the ECMWF operational data assimilation.

NASA-NOAA-DOD Joint Center for Satellite Data Assimilation (JCSDA)

Satellite Data Ingest

Daily Percentage of Data Ingested into Models

Motivating Factors for the JCSDA

Five Order of Magnitude Increases in Satellite Data Over Fifteen Years (2000-2015)

Received = All observations received operationally from providers Selected = Observations selected as suitable for use Assimilated = Observations actually used by models

Too many observations, or not enough?

- AIRS
 - > 3 billion radiance measurements/day
 - ~100 million received
 - ~2 million assimilated
- Data volume creates logistical and scientific problems
- Clouds
- HDTV analogy
 - 200 billion pieces of information per day per channel; device is arguably useful even if user not glued to it 24/7
 - Similarly, not every piece of information provided has to be assimilated in order for AIRS to be a success; focus on the breaking news!

AIRS radiance vs. retrievals comparison

- One period (January 2003), three experiments:
 - Control; including all observations used for routine operations: radiosonde, surface, aircraft and satellite measurements
 - AIRS-1; control + AIRS clear radiances (251 channels)
 - AIRS-2; control + AIRS Science Team temperature retrievals (v. 4.7);
- Assimilation system is GEOS-5, beta7p4; horizontal resolution 1 by 1
 ¼ degrees
 - fv-model
 - GSI analysis
 - radiance-based system; AIRS retrievals assimilated as if they were radiosondes
- 27 cases: five-day forecast every day at 00Z; verification carried out against self and NCEP operational analysis (only NCEP shown here)

Radiances Used in Analysis for Two Low Peaking Tropospheric AIRS Channels

AIRS Data Assimilation Using Cloudy Fields of View

Initial Experiments: 1 January – 24 February 2007 Control – Current Ops. (OP. data coverage - Uses 152 AIRS channels from all fovs with operational thinning)

Experiment- Op. data coverage, minus Op. AIRS plus AIRS radiances from channels free from cloud effects and radiances from the clear air part of selected cloudy fovs (with operational thinning).

How do we measure data impact?

- Classical data denial experiment (OSE)
 - Highlights the effects of pulling out whole classes of observations on a wide variety of diagnostics
- Emerging technique: Adjoint sensitivity analysis (Gelaro, Langland, Baker, Daley, ...)
 - Highlights the impact of a pre-defined metric (cost function) observation by observation

Efficient Estimation of Observation Impact

Adjoint examination of AIRS negative impact

July 2005 00z (20-50N, 0-80E)

NAVDAS ADJOINT

Total Impact by Observation Type

What next?

Operational implementation plan

Data assimilation system development

Launch schedules

OSSE capability

Operational implementation plans (NCEP/EMC):

Windsat

IASI

ASCAT

COSMIC (bending angle)

OMI ozone

SSMI/S

GRAS

Sat winds EE screening

GOME-2

3rd Q FY08

4th Q FY08

"

"

"

"

(date still TBD)

"

"

Meanwhile ...

- IASI operational at ECMWF since June 12, 2007; ASCAT a close second
- JCSDA lagging by one year; lack of planning and resources
 - DDS, timeliness, CRTM readiness ...
- JCSDA will have to invest heavily in NPP and ADM now in order to prevent this from happening again
 - Simulated data need to be flowing into a replica of the operational assimilation well before launch

GSI/GFS Impact study with COSMIC

- Anomaly correlation as a function of forecast day for two different experiments:
 - PRYnc (assimilation of operational obs),
 - PRYc (PRYnc + COSMIC refractivity)
- We assimilated around 1,000 COSMIC profiles per day
- In general, the impact of the COSMIC data will depend on the meteorological situation, model performance, location of the observations, etc.

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. JCSDA Seminar, 10/24/2007

"CRTM" Impact 500 mb Height Anomaly Correlation

Northern Hemisphere

Southern Hemisphere

September 26 - October 19, 2006

Next-generation data assimilation system(s)

- JCSDA needs a four-dimensional data assimilation system
 - Satellite data are inherently asynoptic
 - Modern algorithms (4D-VAR, ensemble-based) have explicitly or implicitly state-dependent and multivariate background error covariances
 - 4D-VAR is the algorithm to beat

System development challenges

- GSI now operational at NCEP (May 1, 2007)
 - Simplified 4D-VAR ("FOTO") in testing
- GMAO validating GSI-based system for reanalysis; operations will follow shortly
 - Classical 4D-VAR in advanced stages of development
- AFWA/NCAR using WRF/VAR
 - 3D-VAR and 4D-VAR options; GSI under implementation
- NRL/Monterey using NAVDAS; "4D" version (Accelerated Representer) in testing

Short-term challenge for the JCSDA:

- Very aggressive satellite launch schedule
 - 2008 SMOS, DMSP F-18, GOES O, GOCE, GOSAT, Jason-2
 - 2009 OCO, ADM, Aquarius, NPP (CrIS, VIIRS, ATMS, CMIS), NOAA N', MSG-3, GOES P, Cryosat-2
 - 2010 DMSP F-19
 - 2011 METOP-B, MSG-4

Long-term challenge for the nation

A remarkably thin satellite launch schedule

```
• 2010 - DMSP F-19
```

- 2011 -
- 2012 -
- 2013 NPOESS C-1
- 2014 GOES-R
- 2015 -
- What is happening to US leadership in Earth Observations?
 - Tight funding
 - Transition from being engineering-driven to requirementsdriven without a well-defined process to support this

Planned capability: Observing System Simulation Experiments (OSSE)

- NESDIS needs this for mission assessment
 - GOES-R
 - Scatterometer
 - NPOESS, NPOESS+
 - Doppler Wind Lidar
 - Non-satellite observation
- NASA needs this for mission assessment
 - Decadal survey missions
 - New opportunities

What is an OSSE system?

 a simulated environment in which a quantitative assessment can be made of the expected impact of a hypothetical future observing system on an environmental prediction problem

What is required?

- A simulation of reality ("Nature Run")
- A set of simulated observations
- State of the art data assimilation system(s)
- A broad-based group of investigators collaborating using (informal "Joint OSSE" Working Group has been meeting for 18 months)
 - One methodology
 - One set of metrics
- Agency commitment and funding
 - Plan to be presented to NASA and NOAA/NESDIS this fall